US009081628B2

a2 United States Patent 10) Patent No.: US 9,081,628 B2
Ma 45) Date of Patent: Jul. 14, 2015
(54) DETECTING POTENTIAL ACCESS ERRORS 7,711,931 B2 52010 Kissell
IN A MULTI-THREADED APPLICATION joa.20 B2 122000 Kissell
. , 2002/0120428 Al* /2002 Christiaens 702/186
(75) Inventor: Zhigiang Ma, Platteville, WI (US) 2003/0182515 Al 9/2003 Zahir
2004/0025164 Al 2/2004 Ma et al.
(73) Assignee: Intel Corporation, Santa Clara, CA 2005/0010729 Al 1/2005 Silvera et al.
(US) 2005/0038806 ALl™* 2/2005 Ma .ccooevvinviieiieie 707/102
2007/0074213 Al 3/2007 Maet al.
. 2007/0266386 Al* 11/2007 Kishanetal. 718/102
(*) Notice: Subject to any disclaimer, the term of this 2008/0155342 Al* 6/2008 O’Callahan .oooovevvvoonn, 714/38
patent is extended or adjusted under 35 Continued
U.S.C. 154(b) by 347 days. (Continued)
FOREIGN PATENT DOCUMENTS
(21) Appl. No.: 13/117,526
. EP 0982658 1/2000
(22) Filed. May 27, 2011 OTHER PUBLICATIONS
(65) Prior Publication Data International Searching Authority, “Notification of Transmittal of the
US 2012/0303910 A1 Nov. 29, 2012 International Search Report and the Written Opinion of the Interna-
tional Searching Authority,” mailed Aug. 29, 2012, in International
(51) Int.ClL application No. PCT/US2011/067989.
GO6F 9/52 (2006.01) (Continued)
GO6F 11/36 (2006.01)
(52) US.CL Primary Examiner — Charles Rones
CPCcccee. GO6F 9/52 (2013.01); GO6F 11/3632 Assistant Examiner — Andrew Russell
(2013.01); GOGF" 11/3612 (2013.01) (74) Attorney, Agent, or Firm — Trop, Pruner & Hu, P.C.
(58) Field of Classification Search
CPC GO6F 9/52; GOG6F 9/526; GOGF 9/3004; (57) ABSTRACT
GOG6F 9/30087; GOG6F 13/1605; GO6F 11/3612; . . s
GOGE 11/3632 In one embodiment, a method includes maintaining thread
USPC 711/150 analysis metadata for a multi-threaded application. The meta-
See application file for complete search history. data.ma.y include a thread. vector clock for threads of the
application and a synchronization vector clock for synchro-
(56) References Cited nization objects of the application. In addition, an initializa-

U.S. PATENT DOCUMENTS

tion logand an access log can be generated and maintained for
memory accesses occurring during execution of the applica-
tion. From this metadata, it may be determined if an access to

6,701,528 Bl 3/2004 Arsenault et al. a memory element by a thread is a potential invalid access for
7,228,391 B2 6/2007 Silvera et al. a different scheduling of the application. Other embodiments
7,516,446 B2* 4/2009 Choietal.cc..... 717/128 ! g PP :
7,539,979 Bl 5/2009 Nir-Buchbinder are described and claimed.
7,549,150 B2 6/2009 Yu
7,673,181 Bl 3/2010 Lindo et al. 20 Claims, 9 Drawing Sheets
200
/| Generate Thresd Vector Clock ‘
For Initial Program Thread
Propagate Spawning Thread's Thread ‘
Vegtor Clock To Thread Vector Clock.
25 Of Any Spawned Thread
Propagate Creating Thread's Thread
Vector Clock To Synchrenization Vector
Cloek Of Synehronization Object On
230 Synchronization Object Creation
I
Update Thread Vector Clock And/Or
Synchronization Vector Clock On
24 Synchronization Acquire/Releass
]
4 Create And Initialize Initialization Log And ‘
Access Log On Memory Allocation
250
i
4 Update Initialization Log On First ‘
Write To Memory Elament
280 l
/| Update Access Log On Memory Access ‘
270
Determine Actual And Potential Access
Violations Based On Accessing Thread's
Thread Vector Clock And Access And
280 Initialization Log

Report Actual And Potential Viclations ‘

US 9,081,628 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2009/0077540 Al 3/2009 Yuanyuan et al.

2009/0248689 Al* 10/2009 Petersenetal. 707/7
2010/0037025 Al 2/2010 Zheltov et al.
2010/0091984 Al* 4/2010 Kerschbaum etal. 380/30

2010/0131931 Al 5/2010 Musuvathi et al.
2010/0192131 Al 7/2010 Dolby et al.

OTHER PUBLICATIONS

Yuan Yu, et al., “RaceTrack: Efficient Detection of Data Race Con-
ditions via Adaptive Tracking,” (SOSP °05), Oct. 23-26, 2005, 14

pages.

Shan Lu, et al, “AVIO: Detecting Atomicity Violations via Access
Interleaving Invariants,” 2006, 10 pages.

Leslie Lamport, “Time, Clocks, and the Ordering of Events in a
Distributed System,” Communications of the ACM, Jul. 1978, vol.
21, No. 7, pp. 558-565.

Min Xu, et al., “A Flight Data Recorder for Enabling Full-System
Multiprocessor Deterministic Replay,” ISCA 2003, 1063-6897/03
(2003), 6 pages.

Colin J. Fidge, “Timestamps in Message-Passing Systems That Pre-
serve the Partial Ordering,” Australian Computer Science Commu-
nications, vol. 10, No. 1, pp. 56-66, Feb. 1988.

* cited by examiner

U.S. Patent Jul. 14, 2015 Sheet 1 of 9 US 9,081,628 B2

Maintain A Thread Vector Clock For
/ Each Of A Plurality Of Threads Of A
110 Multi-Threaded Application

Maintain A Synchronization Vector Clock
/ For Each Of A Plurality Of Synchronization
120| Objects Of The Multi-Threaded Application

Generate |nitialization Log And Access
/ Log For Memory Accesses In The Multi-
130 Threaded Application

Memory Access By
Thread Actual Erroneous
Access For Current Scheduling Or

Additional

Memory A Potential Erroneous Access For
Access To Be An Execution Of The Multi-
Analyzed? 140

Threaded Application Having
A Different
Scheduling ?

Report Actual Or Potential Erroneous
Memory Access

i
150

FIG. 1

U.S. Patent Jul. 14, 2015 Sheet 2 of 9 US 9,081,628 B2

200

Generate Thread Vector Clock
For Initial Program Thread

210

Propagate Spawning Thread's Thread
/ Vector Clock To Thread Vector Clock
220 Of Any Spawned Thread

Propagate Creating Thread’s Thread
Vector Clock To Synchronization Vector
/ Clock Of Synchronization Object On
230 Synchronization Object Creation

Update Thread Vector Clock And/Or
/ Synchronization Vector Clock On
Synchronization Acquire/Release

240
Create And Initialize Initialization Log And
/] Access Log On Memory Allocation
250
Update Initialization Log On First
/ Write To Memory Element
260

V. Update Access Log On Memory Access

270
Determine Actual And Potential Access
Violations Based On Accessing Thread’s
Thread Vector Clock And Access And
280 Initialization Log

y Report Actual And Potential Violations
290

FIG. 2

U.S. Patent Jul. 14, 2015 Sheet 3 of 9 US 9,081,628 B2

Initialize Thread Vector Clock For First Thread

31 :
Does
Thread

Spawn New
Thread?

W
)
(@)

oN

320

Increment Logical Timestamp Of Spawning

/| Thread In Spawning Thread's Vector Clock
330 l

Create Spawned Thread’s Vector Clock With

/1 Copy Of Spawning Thread’s Vector Clock
340

Does
Thread Create
Synchronization

Object? 350

Increment Logical Timestamp Of Creating
Thread In Creating Thread's Vector Clock And
Create Synchronization Vector Clock For
Synchronization Object And Set To Thread | 360

Vector Clock Value Of Creating Thread

Does
N Thread Release

Synchronization
Object?

370

Increment Logical Timestamp Of Releasing

Thread In Releasing Thread’s Vector Clock \380

Update Each Element Of Synchronization
Vector Clock To Higher Of Synchronization
Vector Clock Value Or Releasing Thread's

Vector Clock Value For The Element 390

®

FIG. 3

U.S. Patent Jul. 14, 2015 Sheet 4 of 9 US 9,081,628 B2

N
o

Thread
Acquire Lock On
Synchronization

Object? 410

Update Each Element Of Acquiring Thread's
Vector Clock To Higher Of Synchronization
Vector Clock Value Or Acquiring Thread's

Vector Clock Value For The Element 420

ﬁead
N

Allocate Memory
X?

430

Is X
In Invalid
State?

440

Report X

Y Previously

Allocated

[N

450
Set State Of X To Uninitialized N
460

Create Initialization Log And
Access Log For X N

470
®

FIG. 4

U.S. Patent Jul. 14, 2015 Sheet 5 of 9 US 9,081,628 B2

500

Thread
Deallocate
Memory X?

510

Is
X In Invalid
State?

Report X
Previously
De-Allocated | 530

520

N

Obtain Time Of Accessing Thread
From Thread Vector Clock Of De-

| Allocating Thread And Access Time
550 From Access Log

Logical Timestamp Of
Accessing Thread From De-
Allocating Thread’s Vector Clock
Less Than Or Equal To Access
Time From Access
Log?

560

Report Potential Invalid Access N
570

Set X State To Invalid And Discard
Initialization Log And Access Log [\

580
©

FIG. 5

U.S. Patent

00

Jul. 14, 2015

610

Sheet 6 of 9

Thread
Read

US 9,081,628 B2

Memory X?

Is X

Uninitialized?
620

Report Uninitialized Access \

630

Is X
Invalid?
640

Report Invalid Access

»l 650

v

Obtain Logical Timestamp Of
Initializing Thread From Reading
Thread's Vector Clock And
Initialization Time From
Initialization Log

660

Logical Timestamp
Of Initializing Thread From Reading
Thread’s Vector Clock Less Than
Qr Equal To Initialization Time Fro
Initialization
Log?

670

Report Potential Uninitialized Read \

680

FIG. 6

Record Thread And Thread Vector
Clock Element For Reading Thread In
Access Log As Accessing Thread And [\

Time 690

l¢

®

U.S. Patent Jul. 14, 2015 Sheet 7 of 9 US 9,081,628 B2

~J
o

Thread
Write Memory
X?

710

720

Report Invalid Access N
730

Is X
Uninitialized?
740

Record Thread And Thread
Vector Clock Element For
Writing Thread In Initialization Log As |\

Initializing Thread And Time 750
Set X To Initialized N
760

Record Thread And Thread
Vector Clock Element For Writing
Thread In Access Log As Accessing [\
Thread and Time 770

Additional
Events To

775 Analyze?

FIG. 7

U.S. Patent Jul. 14, 2015 Sheet 8 of 9 US 9,081,628 B2

800
815, 825,
Memory Initialization Access
State Log Log

TVCs sve Table 845 855
815, s 835
e 825, 83

810 820 830 840 850

FIG. 8

U.S.

US 9,081,628 B2

900

Patent Jul. 14, 2015 Sheet 9 of 9
974b 984b
PROCESSOR
970 280
PROC.
CORE
974a
MEMORY MCH MCH MEMORY
932 972 982 934
950
PP P-P » P.p PP
976 978 g 988 986
T l\gf’z T l\ 954
PP CHIPSET pp
HIGH-PERF 994 990 998
GRAPHICS 939
238 IF IF
992 996 916
BUS BRIDGE 1/O DEVICES AUDIO I/0
918 914 924
T T 920

922

KEYBOARD / MOUSE COMM DEVICES

926

FIG.9

930 ~_|

DATA STORAGE
928

CODE

US 9,081,628 B2

1

DETECTING POTENTIAL ACCESS ERRORS
IN A MULTI-THREADED APPLICATION

BACKGROUND

As computer technology advances, more systems are
implemented as multiprocessor systems including potentially
more than one processor or a single processor that includes
multiple cores. To take advantage of these advances, software
developers can write so-called multi-threaded applications.
In these multi-threaded applications, multiple individual
threads can be created and used to independently perform
units of work to take advantage of the multiprocessor nature
of modern computer systems.

While this improves performance and more fully utilizes
the resources available in a multiprocessor system, difficul-
ties can arise due to conflicts between the multiple threads.
For example, different threads may seek access to the same
memory element. Or one thread may seek to use a memory
element prior to its initialization by another thread (or after
another thread has already deallocated the element). A pro-
gram may also suffer from potential conflicts in that whether
a conflict occurs or not depends on a particular scheduling of
the different threads. Thus a conflict can occur according to a
certain scheduling of the application, but not others. Because
of this uncertainty, available code inspection tools generally
cannot determine the presence of potential memory access
errors.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a flow diagram of a high-level view of various
operations performed in a multi-threaded code analysis tool
in accordance with an embodiment of the present invention.

FIG. 2 is a flow diagram illustrating further details of code
analysis operations in accordance with an embodiment of the
present invention.

FIGS. 3-7 are flow diagrams that illustrate particular opera-
tions that can be performed in analyzing a multi-threaded
application in accordance with an embodiment of the present
invention.

FIG. 8 is a block diagram of a storage unit in accordance
with one embodiment of the present invention.

FIG.9isablock diagram of a system in accordance with an
embodiment of the present invention.

DETAILED DESCRIPTION

In various embodiments, potential memory access errors,
including uninitialized memory access errors and invalid
memory access errors in a multi-threaded program can be
detected, even if such potential errors do not manifest them-
selves in a traced execution of the program. Embodiments
may monitor execution of a given run of a multi-threaded
program (the traced execution) and analyze certain events of
interest of the program. In one embodiment, program events
that can be monitored and analyzed include thread creations,
thread exits, synchronizations, memory allocations and de-
allocations (e.g., of heap, stack or static), memory loads and
stores. Of course, in other embodiments additional events
such as function calls and returns, and so forth may also be
monitored.

Consider the following example of code in Table 1 that is
possible in a multi-threaded application.

10

15

20

25

30

35

40

45

50

55

60

65

TABLE 1
#include <windows.h>
int *p:
DWORD WINAPI workl (void *arg)
{
p[0] =0;
return O;

DWORD WINAPI work? (void *arg)

{

return p[0];

int main (int arge, char ** argv)
¥
HANDLE h[2];
p = (int *) malloc (16);
h[0] = CreateThread (0, 8¥1024, workl, NULL, 0, NULL);
h[1] = CreateThread (0, 8¥1024, work2, NULL, 0, NULL);
free (p);
WaitForMultipleObjects (2, h, TRUE, INFINITE);
Return 0;

In this code, two threads, workl and work2, are present,
both of which are created by a main thread. The main thread
allocates a memory element, the first thread writes to the
memory element and the second thread reads from the
memory element (and the main thread thereafter deallocates
the memory element). There are two potential memory access
errors in this example: an invalid access and an uninitialized
read. However, depending on the interleavings of the follow-
ing events as executed according to a given run of the program
by an operating system (OS) scheduler, the errors may or may
not actually occur.

This example program execution generally includes the
following operations:

workl: p[0]=0;

work?2: return p[0];

main: free(p).

These events thus initialize a memory element (via a first
thread work1), read access the memory element (via a second
thread work2), and free the memory element (via the main
thread).

There are 6 possible schedules or interleavings, S1-S6:

S1: workl: p[0]=0; work2: return p[0]; main: free(p);

S2: work2: return p[0]; work1: p[0]=0; main: free(p);

S3: workl: p[0]=0; main: free(p); work2: return p[0];

S4: main: free(p); workl: p[0]=0; work2: return p[0];

S5: work2: return p[0]; main: free(p); work1: p[0]=0;

S6: main: free(p); work2: return p[0]; work1: p[0]=0;

The actual errors in each schedule are:

S1: no actual errors occur;

S2: uninitialized read. Work2 reads p[0] before work] ini-
tializes it;

S3: invalid access. Work?2 reads p[0] after it is freed;

S4: invalid access. Work1 writes p[0], and work?2 reads p[0]
after it is freed;

S5: uninitialized read and invalid access. Work?2 reads p[0]
before it is initialized, and work1 writes p[0] after it is
freed;

S6: invalid access and uninitialized read. Work?2 reads p[0]
and work1 writes p[0] after it is freed, and work2 reads
plO] before it is initialized.

An analysis tool in accordance with an embodiment of the
present invention can detect memory access errors even in a
program run when the errors do not actually occur (but may
occur in future runs). Therefore, this tool can detect the poten-
tial uninitialized memory read and invalid access even if the
threads are interleaved according to schedule S1 in this

US 9,081,628 B2

3

example. That is, whether a memory access error is actual or
potential depends on the thread scheduling. A potential error
in one particular run can be an actual error in different runs
and vice versa.

For each thread of the program under analysis, an analysis
tool in accordance with an embodiment of the present inven-
tion may provide a unique identifier and a vector clock. The
thread identifier can be a non-negative number. For example,
the number 0 can be used to identify an initial thread, the
number 1 for the next initiated thread and so on. In turn, a
thread vector clock (TVC) is a vector allocated to a given
thread having a plurality of elements. More specifically, each
element may be an integer having a value corresponding to a
logical timestamp, where each element in the vector corre-
sponds to a thread created in the program under analysis. Thus
the total number of elements in the thread vector clock cor-
responds to the total number of threads ever created in the
program. The notation TVCj=[0, 1,0, . .. | may be used herein
to denote the vector clock of thread j, in which O is for thread
0,1 is for thread 1 and Ois for thread 2, etc. The notation TVC;j
[i] is used to refer to the element for thread i in the vector clock
of thread j. In one embodiment, each element may store a
value corresponding to a logical timestamp for the thread,
where each of the values can be independently updated as a
result of program execution, as described below. Note that the
logical timestamps of a given thread vector clock may not
reflect accurate timestamp information for any other thread.
That is, as will be described update information may only be
passed to a TVC when the corresponding thread is involved in
a synchronization operation. Thus, the TVC may be main-
tained in a non-coherent state with respect to the current
logical timestamp for the various threads (present in the cor-
responding threads” vector clocks), reflecting that the thread
has partial knowledge of the event ordering of the other
threads.

In addition to various memory accesses, a program under
analysis may also create synchronization objects (for
example, critical sections, mutual exclusion mechanisms
(mutexes) such as a given type of lock, etc.) to enable threads
to synchronize with each other. Embodiments may further
provide aunique identifier and a synchronization vector clock
(SVC) for each synchronization object, similar to the identi-
fier and vector clock described above for the threads. Thus the
SVC may similarly include an element for each thread of the
program and thus the total number of elements in the syn-
chronization vector clock corresponds to the total number of
threads, and each element again may be a logical timestamp
for the thread, where the value of each element can be indi-
vidually updated as a result of program execution, as
described below. The notation (SVC)m=[0, 1, 0, . . . | may be
used herein to denote the vector clock for synchronization
object m, in which O is for thread O, 1 is for thread 1 and 0 is
for thread 2, etc. The notation SVCm [n] may be used herein
to refer to the element for thread n in the vector clock of
synchronization object m.

Note that in various embodiments there can be two differ-
ent synchronization instances that can be tracked using an
analysis tool: posting synchronization and receiving synchro-
nization. For example, releasing a mutex is a posting synchro-
nization and acquiring a mutex is a receiving synchroniza-
tion. As will be discussed further below, the vector clock of
the synchronization object is used to propagate logical times-
tamps from the thread performing a posting synchronization
to another thread performing a receiving synchronization on
the same synchronization object.

With regard to memory accesses, for any memory element
at a location or address x in the program, it can be in one of

20

35

40

45

50

55

65

4

three states at any time: Invalid, Uninitialized or Initialized.
The initial state of a memory location is Invalid, then on
allocation it is Uninitialized, and next on a first write it is
Initialized, and finally the location can be returned to the
Invalid state upon freeing. A data structure may be provided to
store the state of each memory element. The state is updated
and maintained during the execution of the program.

To determine potential (and actual) errors, embodiments
may maintain an initialization log and an access log for each
memory element X used in the program. When a memory
location x is being initialized, an initialization log may be
created that includes an identification of the initializing
thread and a logical time of the initialization (by reference to
the value stored in the element of the initializing thread’s
vector clock corresponding to the initializing thread at the
time of initialization). In one embodiment, a single initializa-
tion log may be present, with a separate entry for each
memory element. Or in other embodiments, each memory
element may have its own initialization log.

When x is accessed during program execution (including at
its initialization), an access log may be updated that includes
an identification of the accessing thread and a logical time of
the access (by reference to the value stored in the element of
the accessing thread’s vector clock that corresponds to the
accessing thread at the time of access). In one embodiment, a
single access log may be present, with a separate entry for
each memory element. Or in other embodiments, each
memory element may have its own access log.

Referring now to FIG. 1, shown is a flow diagram of a
high-level view of various operations performed in a multi-
threaded code analysis tool in accordance with an embodi-
ment of the present invention. As shown in FIG. 1, method
100 may be performed during a single execution of a multi-
threaded application on a system. During this single execu-
tion, the tool may determine both actual access violations for
the executed scheduling (as determined by an OS scheduler)
as well as potential access violations for a different schedul-
ing of the program.

As seen in FIG. 1, method 100 may include maintaining a
thread vector clock for each thread of the application (block
110). In addition, a synchronization vector clock can be main-
tained for each synchronization object of the application
(block 120). In addition, for any memory touched during
execution of the application, an initialization log and an
access log may be generated (block 130). Also, the access log
may be updated as the memory element is accessed during
execution. Note that while shown with this particular
sequence of operations in the embodiment of FIG. 1, under-
stand the scope of the present invention is not limited in this
regard. Furthermore, understand that in different embodi-
ments, various manners of maintaining these thread and syn-
chronization vector clocks, as well as generating and updat-
ing access and initialization logs can occur. These operations
thus described may occur throughout execution of the multi-
threaded program. Furthermore, the maintaining of the dif-
ferent clocks may include various operations such as clock
propagations, comparisons, updates and so forth, all of which
can be iteratively performed responsive to occurrence of cer-
tain events during program execution.

Still referring to FIG. 1, for a given memory access, it may
be determined whether the access by a given thread is an
actual or a potential erroneous access, such as an actual erro-
neous access for a traced execution, or a potential invalid
and/or uninitialized access for another execution of the appli-
cation having a different schedule (diamond 140). If so, con-
trol passes from diamond 140 to block 150, where the actual
or potential erroneous access can be reported. Otherwise,

US 9,081,628 B2

5

with regard to that particular memory access no further action
is taken. Control passes from both of diamond 140 and block
150 to diamond 155 where it can be determined if additional
memory accesses are to be analyzed. If so, control passes
back to diamond 140 as above. Of course understand that the
various operations in maintaining, generating and updating
the thread vector clocks, synchronization vector clocks, and
access and initialization logs can occur. Thus FIG. 1 shows a
very high level of operation of an analysis tool, rather than any
actual execution of the tool.

Referring now to FIG. 2, shown is a flow diagram illustrat-
ing further details of operations in accordance with an
embodiment of the present invention. As shown in FIG. 2, an
analysis tool, which can be a parallel code inspection tool,
may execute a method 200 to generate and update thread
vector clocks, synchronization vector clocks, initialization
and access logs in accordance with an embodiment of the
present invention. Furthermore, for any memory accesses of
the application under analysis it can be determined whether
an actual or potential violation exists.

As seen in FIG. 2, method 200 may begin by generating a
thread vector clock for an initial program thread (block 210).
In one embodiment, this thread vector clock may be set at a
value of zero for each of the multiple threads of the program.
When a thread spawns a new thread, the spawning thread’s
vector clock may be propagated to the spawned thread (block
220). Note that this propagated thread vector clock may cor-
respond to the value of the spawning thread’s vector clock at
the time of the new thread’s creation. A similar propagation
may be performed for creation of any synchronization
objects. Accordingly, at block 230 a thread’s vector clock
may be propagated to create a synchronization vector clock
when the thread creates the synchronization object. Note that
this propagated synchronization vector clock may correspond
to the value of the creating thread’s vector clock at the time of
the synchronization object’s creation.

Still referring to FIG. 2, at block 240 a thread vector clock
and/or a synchronization vector clock can be updated on
synchronization acquisition and/or release. That is, the vector
clocks for both the associated thread and synchronization
object can be updated when a synchronization object is
posted (released). On a synchronization object receipt (ac-
quiring), only the thread vector clock may be updated. As will
be discussed further, in various embodiments different types
of'updates are possible. Next at block 250, both an initializa-
tionlogand an access log may be generated and initialized for
a memory element on allocation of the memory element. The
initialization log and access log can be created and initialized
(for example, zeroing out the data structures) on allocation of
the memory element. Then on a first write to the memory
element, the initialization log may be written (block 260).
More specifically, information regarding the initialization
thread and initialization time is written to the initialization log
at the time of first writing to the memory element by a thread.
Then at block 270 an access log may be updated when the
memory element is accessed (with the accessing thread iden-
tifier and access time).

Note while shown with this linear flow and particular order
in the embodiment of FIG. 2, understand the scope of the
present invention is not limited in this regard and the various
operations described above can be performed generally in any
order (although typically the first operation will be generation
of a thread vector clock for an initial program thread). Thus
these various operations described above can be performed
during analysis of program execution according to a given
scheduling of the program, e.g., by an OS scheduler. The

10

15

20

25

30

35

40

45

50

55

60

65

6

various information generated and updated, including vector
clocks, access logs and initialization logs can be stored in one
or more different buffers.

Then at block 280, it can be determined whether actual or
potential access violations occur based on information from
an accessing thread’s vector clock and an access log and
initialization log for the memory element to be accessed. If
such an actual or potential violation is determined, it may be
reported at block 280, e.g., by generating an entry in a report
log, which can be stored in a memory or other buffer and/or
displayed to a user via a display. Although shown at this high
level in the embodiment of FIG. 2, understand that the scope
of the present invention is not limited in this regard and in
various embodiments, particular operations may be per-
formed in an asynchronous manner, rather than the linear flow
shown in FIG. 2.

Referring now collectively to FIGS. 3-7, shown are flow
diagrams that illustrate particular operations that can be per-
formed in analyzing a multi-threaded application in accor-
dance with an embodiment of the present invention. More
specifically, FIGS. 3-7 illustrate code of an analysis tool that
can be used to perform various operations including thread
and synchronization vector clock generation and updates,
access and initialization log generation and updates, and
determination of whether actual or potential memory access
violations occur, based on analysis of a single scheduling of a
multi-threaded application. Note that although shown with a
particular order in the embodiment of FIGS. 3-7, understand
the scope of the present invention is not limited in this manner
and in different embodiments, the operations performed can
occur in a different order.

Referring first to FIG. 3, shown is a portion 300 of a
multi-threaded application analysis in accordance with an
embodiment of the present invention. The various operations
in FIGS. 3-7 may be implemented in code of an analysis tool
as it parses execution of a multi-threaded application. As
shown in FIG. 3, portion 300 may begin by initializing a
thread vector clock for a first thread (block 310). This initial
program thread may have its thread vector clock set to an
initial value having all elements set at a zero value. Next it
may be determined at diamond 320 whether the thread
spawns a new thread. If so, control passes to block 330 where
the spawning thread’s element in its own vector clock may be
incremented. In addition at block 340 the spawned thread’s
vector clock can be created by copying the spawning thread’s
vector clock to this new thread’s vector clock. Thus in this
embodiment, a spawning thread’s vector clock can be propa-
gated to the spawned thread to initialize its thread vector
clock.

Still referring to FIG. 3 at diamond 350 it may be deter-
mined whether a thread creates a synchronization object. If
s0, control passes to block 360 where the creating thread’s
element in its own vector clock is incremented, and a syn-
chronization vector clock can be created for the synchroniza-
tion object by copying the creating thread’s vector clock. That
is, in the embodiment of FIG. 3, another propagation opera-
tion can be performed to thus copy the creating thread’s
vector clock to set the initial state of the synchronization
vector clock for the synchronization object.

As seen in FIG. 3, control passes next to diamond 370
where it may be determined whether the thread releases the
synchronization object. If so, the thread’s vector clock may be
updated (block 380). More specifically, the value of the ele-
ment corresponding to the releasing thread in the thread’s
vector clock can be incremented. Control next passes to block
390 where each element of the synchronization vector clock
can be updated. More specifically, each element can be set to

US 9,081,628 B2

7

the higher of the synchronization vector clock value (that is,
no change is made) or the releasing thread’s vector clock
value for the corresponding element.

Flow continues to FIG. 4, which is a further portion 400 of
multi-threaded application analysis in accordance with an
embodiment of the present invention. As shown in FIG. 4, it
may be determined at diamond 410 whether a thread acquires
a lock on a synchronization object. If so, control passes to
block 420 where an update to the accessing thread’s vector
clock can be performed to thus set the value of each of the
vector clock elements to the higher of the synchronization
vector clock element value or the acquiring thread’s corre-
sponding thread vector clock value for the element.

Control next passes to diamond 430 where it may be deter-
mined whether a thread allocates a memory element X. If so,
it can be determined whether X is in the invalid state (dia-
mond 440). If not, control passes to block 450 where X may
be reported as previously allocated and thus as an actual error.
Control passes from both diamond 440 and block 450 to block
460 where the state of X may be set to uninitialized. Control
then passes to block 470 where an initialization log and an
access log for X can be created. As will be described below, in
one embodiment, the initialization log may later be generated
on initialization of the memory element by way of storing an
entry for the memory element in an initialization log that
includes an identifier for the initializing thread and the cor-
responding value of the element for the thread in the initial-
izing thread’s vector clock. The same information may be
stored in a corresponding entry of the access log.

Flow continues to FIG. 5, which is a further portion 500 of
multi-threaded application analysis in accordance with an
embodiment of the present invention. At diamond 510 it may
be determined whether a thread has deallocated memory X. If
s0, control passes to diamond 520 to determine whether X is
already in the invalid state. If yes, control passes to block 530
where X may be reported as previously de-allocated as an
actual violation. Next, a series of operations may be per-
formed to determine whether an invalid access potential error
exists. Specifically, at block 550 a time of the last accessing
thread in the de-allocating thread’s vector clock and an access
time from the access log (that corresponds to the last access of
the memory element) can be obtained. Control then passes to
diamond 560, where it may be determined whether the logical
timestamp element of the access thread in the de-allocating
thread’s vector clock is less than or equal to the access time
from the access log. If so, a potential invalid access could
occur in some scheduling of the application as the last access
could potentially occur after the deallocation and accord-
ingly, this potential invalid access can be reported (block
570). The reporting may take different forms; however in
some embodiments information regarding this potential
invalid access can be stored in an error log. In addition, the
information may be provided to, e.g., a user interface such as
a graphical user interface to enable a user to view this infor-
mation. Control passes next to block 580 where X may be set
to the invalid state and both the initialization log and the
access log can be discarded, e.g., to reduce memory con-
sumption.

Flow continues to FIG. 6, which is a further portion 600 of
multi-threaded application analysis in accordance with an
embodiment of the present invention. At diamond 610 it may
be determined whether a thread reads a memory element X. If
s0, control passes to diamond 620 where it may be determined
whether X is uninitialized. If so, control passes to block 630
where an uninitialized access may be reported. Then at dia-
mond 640 it may be determined whether X is in an invalid
state. If so, an invalid access can be reported (block 650).

25

30

40

45

55

8

Control then passes to block 660 where the initialization
thread’s time in the reading’s thread vector clock and the
initialization time from the initialization log can be obtained.
Then at diamond 670 using this information, it can be deter-
mined whether the logical timestamp of the initializing thread
is less than or equal to the initialization time from the initial-
ization log. If so, a potential uninitialized read can occur in a
certain scheduling of the program and thus at block 680 this
potential uninitialized read can be reported. Control then
passes to block 690, where the thread and the thread vector
clock element for the reading access thread can be recorded in
the access log for memory element X to thus indicate the
accessing thread and time.

Flow continues to FIG. 7, which is a further portion 700 of
multi-threaded application analysis in accordance with an
embodiment of the present invention. As shown in FIG. 7,
portion 700 may begin by determining whether a thread
writes to memory element X (diamond 710). If so, control
passes to diamond 720 where it may be determined whether X
is in the invalid state. If it is, an invalid access may be reported
(block 730). Then it may be determined whether X is in an
uninitialized state (diamond 740). If so, control passes to
block 750 where the thread and the thread vector clock ele-
ment for the writing thread from its thread vector clock can be
recorded in the initialization log as the initializing thread and
time.

Control then passes to block 760 where X may be set to an
initialized state and then the same information from the
thread, namely its identifier and its corresponding thread
vector clock element can be recorded in the access log as the
accessing thread’s and time (block 770). As seen, at this point
the various possible events occurring during multi-threaded
application execution relevant to an analysis described herein
have been handled. Accordingly, control may proceed back to
FIG. 3, discussed above if there are still events to analyze (as
determined at diamond 775), otherwise the method can come
to an end. Although shown with these particular operations in
the order shown in FIGS. 3-7, understand the scope of the
present invention is not limited in this manner and different
scheduling and occurrence of these operations can be per-
formed in other embodiments. Furthermore, understand that
the determinations can be performed after execution of the
application itself, as embodiments may buffer the thread vec-
tor clock information, synchronization vector clock informa-
tion and the initialization and access logs such that the analy-
sis can be performed after execution of the application is
completed.

Table 2 below shows example pseudo code of a memory
checking algorithm to detect potential uninitialized memory
accesses or invalid memory access errors in accordance with
an embodiment of the present invention.

TABLE 2

While (the program is not finished) {
On (thread T creates thread T°) {
for (each thread K) {
if (K ==T)
TVCK] = TVCK] + 1;

}
create TVC, =[0,0,0, ...];
TVCp =TVCy

On (thread T creates a synchronization object M) {
for (each thread K) {
if(K==T)
TVCK] = TVCK] + 1;
¥

US 9,081,628 B2

9
TABLE 2-continued

create SVC,,=1[0,0,0,...];
SVC,=TVCy

On (thread T performs a posting synchronization on
synchronization object M) {
for (each thread K) {
if(K==T)
TVCAK] =TVC{K]+ 1;

¥
for (each thread K) {
SVC,JK] = max(SVC,,[K] , TVC AK]);

On (thread T performs a receiving synchronization on
synchronization object M) {
for (each thread K) {
TVC K] = max(SVCy, K], TVCK]);

On (thread T allocates memory X) {
if (X is not Invalid)
report X already allocated;
set state of X to Uninitialized;
initialize the initialization log and access log for X;

}
On (thread T de-allocates memory X) {
If (X is Invalid)
report de-allocating already de-allocated memory;
get accessing thread T, and time of access t, ., recorded in
the access log if the access log exists;
I (TVCE [Tapeass] <= taceess)
report potential invalid access;
set state of X to Invalid;
discard the initialization log and access log of X;

}
On (thread T reads memory X) {
if (X is Uninitialized)
report uninitialized access;
if (X is Invalid)
report invalid access;
get the initializing thread T),,;, and the time of initialization t;,;
recorded in the initialization log;
I (TVCr (Tinie) <=tim)
report potential uninitialized read
record T and TVC [T] as accessing thread and accessing time
respectively in the access log;

}
On (thread T writes memory X) {
if (X is Invalid)
report invalid access;
if (X is Uninitialized) {
record T and TVCy [T] as initializing thread and
initialization time respectively in the initialization log;
set state of X to Initialized;

record T and TVC [T] as accessing thread and accessing time
respectively in the access log;

}

Note that the various vector clocks, initialization logs and
access logs can be stored in different locations within a sys-
tem. For example, various buffers such as present in cache
memories of a processor, system memory or so forth can be
used to store information generated during execution of an
analysis tool in accordance with an embodiment of the
present invention. Understand however that the actual form of
the buffers or other storage facilities can vary.

As one example of a storage mechanism for data generated,
updated and analyzed using an analysis tool, FIG. 8 shows a
block diagram of a storage unit 800. As seenin FIG. 8, storage
unit 800, which may be implemented in cache memory, sys-
tem memory or so forth, includes various partitions including
a thread vector clock partition 810, a synchronization vector
clock partition 820, a memory state partition 830 to store a

10

15

20

25

30

35

40

45

50

55

60

65

10

memory state table 835 (which may include an indication of
a given state, e.g., invalid, uninitialized, or initialized, for
each memory element), an initialization log partition 840, and
an access log partition 850. As seen in thread vector clock
partition 810, a plurality of thread vector clocks 815,-815,
may be present. Similarly, in synchronization vector clock
partition 820, a plurality of synchronization vector clocks
825,-825,, may be present. In the embodiment shown in FIG.
8, initialization partition 840 may include an initialization log
845, which may include multiple entries, each to store initial-
ization data for initialization of a memory element. For
example, each entry may store an identifier of the initializing
thread and its logical timestamp, obtained from its thread
vector clock at the time of initialization. Also in the embodi-
ment shown in FIG. 8, access partition 850 may include an
access log 855, which in one embodiment may include a
plurality of entries each associated with a particular memory
element.

To conserve space in this partition, in one embodiment only
information of the most recent access to a memory element
may be stored in the corresponding entry. Thus in this
embodiment, on a second access to a memory element, the
newly accessing thread’s information may overwrite the
information stored in the corresponding entry. The informa-
tion stored in each entry may correspond to, in one embodi-
ment, an identifier for the accessing thread and its logical
timestamp, obtained from its thread vector clock at the time of
access. However in other embodiments, e.g., where space is
not a consideration understand that multiple access log
entries can be associated with each memory element, where
each entry stores information for a particular access. Note that
as used herein the terms “access log” and “initialization log”
may identify all such logs for all memory elements collec-
tively, or can also be used to identify such logs for only a given
memory element, and further note that the access log and
initialization log are global to all threads. Although shown
with this particular implementation in the embodiment of
FIG. 8, understand the scope of the present invention is not
limited in this regard and additional or different information
can be obtained for performing memory access checking in
accordance with an embodiment of the present invention.

Embodiments may thus monitor program events and take
proper actions based on the event types from the beginning of
the program until its completion. From this monitoring and
analysis of thread synchronization events, potential event
scheduling can be determined, and in turn the initialization
and access logs can be used to detect potential errors.

Embodiments may further process memory read/write
events in an asynchronous manner or in a batch mode for
performance, as the algorithm does not depend on actual
thread interleavings. For example, memory read/write events
of'a thread can be buffered in a thread private buffer when the
events are observed and later processed in a chunk when the
buffer is full (or at another selected time) for better cache
utilization and performance. Thus embodiments may analyze
a single program run and detect potential uninitialized
memory access or invalid memory access errors for differ-
ently scheduled runs of the program.

Embodiments may thus provide the functionality and abil-
ity to detect potential uninitialized memory read and invalid
memory access errors in a multi-threaded program, which can
be implemented within a memory checking tool. With this
functionality, a parallel inspection tool can find hidden bugs
in code which may only be triggered in an end user’s envi-
ronment after the code is shipped. In this way, improved
reliability of parallel programs can be realized.

US 9,081,628 B2

11

Embodiments may be implemented in many different sys-
tem types. Referring now to FIG. 9, shown is a block diagram
of'a system in accordance with an embodiment of the present
invention. As shown in FIG. 9, multiprocessor system 900 is
a point-to-point interconnect system, and includes a first pro-
cessor 970 and a second processor 980 coupled via a point-
to-point interconnect 950. As shown in FIG. 9, each of pro-
cessors 970 and 980 may be multicore processors, including
first and second processor cores (i.e., processor cores 974a
and 9745 and processor cores 984a and 984b), although
potentially many more cores may be present in the proces-
sors. Each of the cores may include various caches having
buffers to store the various thread analysis metadata as
described above.

Still referring to FIG. 9, first processor 970 further includes
amemory controller hub (MCH) 972 and point-to-point (P-P)
interfaces 976 and 978. Similarly, second processor 980
includes a MCH 982 and P-P interfaces 986 and 988. As
shown in FIG. 9, MCH’s 972 and 982 couple the processors
to respective memories, namely a memory 932 and a memory
934, which may be portions of main memory (e.g., a dynamic
random access memory (DRAM)) locally attached to the
respective processors. First processor 970 and second proces-
sor 980 may be coupled to a chipset 990 via P-P interconnects
952 and 954, respectively. As shown in FIG. 9, chipset 990
includes P-P interfaces 994 and 998.

Furthermore, chipset 990 includes an interface 992 to
couple chipset 990 with a high performance graphics engine
938, by a P-P interconnect 939. In turn, chipset 990 may be
coupled to a first bus 916 via an interface 996. As shown in
FIG. 9, various input/output (I/O) devices 914 may be
coupled to first bus 916, along with a bus bridge 918 which
couples first bus 916 to a second bus 920. Various devices may
be coupled to second bus 920 including, for example, a key-
board/mouse 922, communication devices 926 and a data
storage unit 928 such as a disk drive or other mass storage
device which may include code 930, e.g., to perform memory
checking analysis of multi-threaded code in accordance with
an embodiment of the present invention. Further, an audio [/O
924 may be coupled to second bus 920.

Embodiments may be implemented in code and may be
stored on a storage medium having stored thereon instruc-
tions which can be used to program a system to perform the
instructions. The storage medium may include, but is not
limited to, any type of non-transitory storage medium such as
a disk including floppy disks, optical disks, solid state drives
(SSDs), compact disk read-only memories (CD-ROMs),
compact disk rewritables (CD-RWs), and magneto-optical
disks, semiconductor devices such as read-only memories
(ROMs), random access memories (RAMs) such as dynamic
random access memories (DRAMs), static random access
memories (SRAMs), erasable programmable read-only
memories (EPROMs), flash memories, electrically erasable
programmable read-only memories (EEPROMs), magnetic
oroptical cards, or any other type of media suitable for storing
electronic instructions.

While the present invention has been described with
respect to a limited number of embodiments, those skilled in
the art will appreciate numerous modifications and variations
therefrom. It is intended that the appended claims cover all
such modifications and variations as fall within the true spirit
and scope of this present invention.

10

20

25

30

35

40

45

50

55

60

65

12

What is claimed is:

1. A method comprising:

maintaining a thread vector clock in a first storage of a

processing system for a first thread of a plurality of
threads of a multi-threaded application executing on the
processing system;

maintaining a synchronization vector clock in a second

storage of the processing system for each synchroniza-
tion object of a plurality of synchronization objects of
the multi-threaded application;

generating an access log for memory accesses occurring

during execution of the multi-threaded application;
during execution of a current thread scheduling of the
multi-threaded application:
in response to the first thread de-allocating a first
memory element:
obtaining a timestamp of the first thread from the
thread vector clock for the first thread, wherein the
first thread vector clock includes a number of ele-
ments equal to a total number of threads created by
the multi-threaded application;
obtaining an access time associated with the first
memory element from the access log; and
determining, in the processing system, that a future
access to the first memory element is a potential
invalid access for a different thread scheduling of
the multi-threaded application when the timestamp
of the first thread from the thread vector clock for
the first thread is less than or equal to the access
time associated with the first memory element from
the access log, wherein the access to the first
memory element is a valid access for the current
thread scheduling of the multi-threaded applica-
tion.

2. The method of claim 1, further comprising reporting the
potential invalid access.

3. The method of claim 1, further comprising generating a
first thread vector clock for an initial thread of the multi-
threaded application and propagating the first thread vector
clock to a second thread vector clock for a second thread
spawned by the initial thread.

4. The method of claim 3, further comprising updating the
first thread vector clock and propagating the updated first
thread vector clock to generate a first synchronization vector
clock when the initial thread creates a first synchronization
object.

5. The method of claim 4, further comprising updating the
updated first thread vector clock and the first synchronization
vector clock when the initial thread releases the first synchro-
nization object.

6. The method of claim 5, further comprising updating the
second thread vector clock when the second thread acquires
the first synchronization object.

7. The method of claim 6, wherein updating the second
thread vector clock comprises propagating information from
the first thread vector clock to the second thread vector clock
via the first synchronization vector clock.

8. The method of claim 1, further comprising generating
the entry of the access log associated with the first memory
element responsive to allocation of the first memory element.

9. The method of claim 1, further comprising determining
that the future access to the first memory element is a potential
uninitialized read based on a comparison of the timestamp of
the first thread from the thread vector clock to an initialization
time associated with the first memory element from an ini-
tialization log.

US 9,081,628 B2

13

10. An article comprising a non-transitory machine-acces-
sible storage medium including instructions that when
executed cause a system to:

generate a first thread vector clock for a first thread of a

multi-threaded application;

create a first synchronization vector clock for a first syn-

chronization object when the first thread creates the first
synchronization object;

update the first thread vector clock and the first synchroni-

zation vector clock when the first thread releases the first
synchronization object;

create an initialization log entry and an access log entry for

a memory element when the memory element is allo-
cated and update the access log entry when the memory
element is accessed; and

during execution of a current thread scheduling of the

multi-threaded application:
in response to the first thread de-allocating the memory

element:

obtain a timestamp of the first thread from the first
thread vector clock for the first thread, wherein the
first thread vector clock includes a number of ele-
ments equal to a total number of threads created by
the multi-threaded application;

obtain an access time associated with the memory
element from the access log entry for the memory
element; and

determine that a future access to the memory element
is a potential invalid access for a different thread
scheduling of the multi-threaded application when
the timestamp of the first thread from the first
thread vector clock is less than or equal to the
access time associated with the first memory ele-
ment from the access log entry, wherein the access
to the memory element is a valid access for the
current thread scheduling of the multi-threaded
application.

11. The article of claim 10, further comprising instructions
that when executed enable the system to create the first syn-
chronization vector clock via propagation of the first thread
vector clock.

12. The article of claim 11, further comprising instructions
that when executed enable the system to determine if the
access is a potential uninitialized read based on a comparison
of the initialization log entry to the timestamp of the first
thread from the first thread vector clock, wherein the initial-
ization log entry is updated when the memory element is first
written.

13. The article of claim 11, further comprising instructions
that when executed enable the system to propagate the first
thread vector clock to a second thread vector clock for a
second thread spawned by the first thread.

14. The article of claim 13, further comprising instructions
that when executed enable the system to update the first
thread vector clock and the first synchronization vector clock
when the first thread releases the first synchronization object.

15. The article of claim 14, further comprising instructions
that when executed enable the system to update the second
thread vector clock when the second thread acquires the first
synchronization object by propagation of information from
the first thread vector clock to the second thread vector clock
via the first synchronization vector clock.

10

15

20

25

30

35

40

45

50

55

60

14

16. A system comprising:

a processor to execute a multi-threaded application having

a plurality of threads and an analysis tool;

a storage coupled to the processor to store thread analysis

metadata including:

a plurality of thread vector clocks, each associated with
one of the plurality of threads and having a plurality of
elements each corresponding to a logical timestamp
of a thread of the plurality of threads;

a plurality of synchronization vector clocks, each asso-
ciated with a synchronization object of the multi-
threaded application and having a plurality of ele-
ments each corresponding to a logical timestamp of a
thread of the plurality of threads; and

an access log having a plurality of entries each associ-
ated with one of plurality of memory elements of the
multi-threaded application to store access informa-
tion for the plurality of memory elements,

wherein the analysis tool is to, during execution of a current

thread scheduling of the multi-threaded application:
in response to a first thread of the plurality of threads
de-allocating a first memory element of the plurality
of memory elements:
obtain a logical timestamp of the first thread from a
first thread vector clock for the first thread, wherein
the first thread vector clock includes a number of
elements equal to a total number of threads created
by the multi-threaded application;

obtaining an access time associated with the first
memory element from the access log; and

determine that a future access to the first memory
element is a potential invalid memory access for a
different thread scheduling of the multi-threaded
application when the logical timestamp of the first
thread from the first thread vector clock for the first
thread is less than or equal to the access time asso-
ciated with the first memory clement from the
access log, wherein the memory access is a valid
access for the current thread scheduling of the
multi-threaded application.

17. The system of claim 16, wherein the storage is to
further store an initialization log having a plurality of entries
each associated with a memory element of the multi-threaded
application to store initialization information for the memory
element.

18. The system of claim 16, wherein the logical timestamps
of the first thread vector clock are maintained in the first
thread vector clock non-coherently with regard to at least one
other thread vector clock.

19.The system of claim 17, wherein the initialization infor-
mation for the memory element comprises an identifier of a
thread that first wrote to the memory element and a logical
timestamp for the initializing thread at an initialization time,
the logical timestamp obtained from the thread vector clock
of' the initializing thread.

20. The system of claim 16, wherein the access information
for the memory element comprises an identifier of a thread
that accessed the memory element and a logical timestamp
for the accessing thread at an access time, the logical times-
tamp obtained from the thread vector clock of the accessing
thread.

